- Darstellung in der Zahlenebene
- Darstellung f in der Zahlenebene complex-plane plot
Deutsch-Englisch Wörterbuch der Elektrotechnik und Elektronik. 2013.
Deutsch-Englisch Wörterbuch der Elektrotechnik und Elektronik. 2013.
Komplexe Zahlenebene — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Gaußsche Zahlenebene — Darstellung einer komplexen Zahl in der Gaußschen Ebene Die gaußsche Zahlenebene (oder kurz Gaußebene) stellt eine geometrische Interpretation der komplexen Zahlen dar, die von Carl Friedrich Gauß um 1811 eingeführt wurde (er erwähnt die… … Deutsch Wikipedia
Gauß'sche Zahlenebene — Darstellung einer komplexen Zahl in der Gaußschen Ebene Als gaußsche Zahlenebene (nach Carl Friedrich Gauß) wird diejenige Menge aller 2 Tupel bezeichnet, welche aus der Zuordnung von imaginären zu reellen Zahlen entsteht. Der Begriff bezieht… … Deutsch Wikipedia
Komplexe Teilmengen — Der vorliegende Artikel über Komplexe Teilmengen beschreibt einige Mengenbegriffe, die häufig in Sätzen der Funktionentheorie verwendet werden, anschaulich im Kontext der komplexen Zahlenebene. Viele der hier erklärten Begriffe werden in einem… … Deutsch Wikipedia
Komplexe Zahl — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass die Gleichung x2 + 1 = 0 lösbar wird. Dies gelingt durch Einführung einer neuen Zahl i mit der Eigenschaft i2 = − 1. Diese Zahl i wird als imaginäre Einheit… … Deutsch Wikipedia
Arganddiagramm — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Gauß-Ebene — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Imaginärteil — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Irreelle Zahlen — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Komplexe Ebene — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Komplexe Zahlen — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia